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Abstract-A coupled scaling analysis-numerical simulation approach is carried out in order to quantify 
the effect of natural convection on the accuracy of diffusion coefficient measurements in dilute liquid alloys. 
This effect is seen to scale with the square of the product of the Grashof and Schmidt numbers. Our results 
also indicate that the design of the experimental set-up should be optimized, especially in the case of species 
such as liquid metal components, that often have low diffusion coefficients. The possibility of damping 
convection in electrically conducting fluids by means of an externally applied magnetic field is also briefly 

discussed. 

I. INTRODUCTION 

The knowledge of solute diffusion coefficients is of 
primary importance in a variety of processes, includ- 
.ing crystal growth from the melt and solidification [ 11. 
Besides, there is also a need for accurate data in order 
to determine which of the various theories of atomic 
transport, e.g. the “quasicrystalline” and “free volume” 
models [I, 21, are applicable. However, measurements 
are not easy to perform since natural convection, 
hardly avoidable in practice, may interfere with the 
diffusive fluxes. In this sense microgravity experiments 
offer a very intere;sting-but costly-alternative [3,4]. 

In a typical experimental long capillary or shear cell 
set-up [l], the development of an initial one-dimen- 
sional concentration step is followed over time. On 
Earth, thin vertical capillaries under a stabilizing tem- 
perature gradient are generally used to limit con- 
vective solute tmnsport. After completion of the 
experiment, the composition in the resulting solid 
alloy is measured and fitted by a Gaussian error func- 
tion under the assumption that the diffusion 
coefficient is concentration independent. 

A standard procedure is to take a compositional 
average over slices normal to the capillary axis. hi 
some cases though, the lateral variations are char- 
acterized, and the degree of radial segregation was 
proposed as a diagnostic to account for the convective 
effects in the liquid phase [2]. Intuitively, one would 
expect that the sensitivity of a given experiment to 
convection will be higher for the case of species with 
low diffusivities, but a simple criterion is still lacking. 

To address these points and to gain some insight 
into the physics of the mass transfer process, we relied 
on a coupled numerical-scaling analysis approach. 
The purpose of this paper is to understand the relevant 

transport mechanisms and to propose a quantitative 
first estimate of the effect of convection in ground 
based diffusion coefficient measurements in order to 
assess them as candidates for space experiments. 

II. BACKGROUND 

In this section, we shall first present the hypotheses 
and then proceed to show how a dimensional analysis 
can be used to identify the relevant variables. We 
model the actual, cylindrical geometry using an ideal- 
ized, two-dimensional planar cell, shown sche- 
matically in Fig. 1. The mass transfer equation is 
written as : 

acjat+(v-v)c= DV~C (1) 

where D is the diffusion coefficient and V is the fluid 
velocity. As an initial condition, we assume that the 
diffusion couple is homogeneized before the beginning 
of the experiments : 

t = 0 c= co z,< L/2 c= c, z> L/2. 

The associated boundary conditions are as follows : 

top/bottom walls aT/az = 0 aqaz = 0 
left wall T = T, acjax= 0 

rightwall T= T,,+AT, K/ax= 0. 

Since the capillary is vertical, buoyancy is governed 
by the interaction of gravity and horizontal density 
gradients. Only weak convection will be considered in 
this paper, since we focus on small perturbations of 
the mass transfer process. For low Prandtl number 
fluids, such as metals or semiconductors, the ratio of 
thermal to solutal diffusivity is very high and weak 
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NOMENCLATURE 

B applied magnetic field Greek symbols 
c alloy composition BT 

I C,, C, end concentrations of the diffusing ACn 
couple 

thermal expansion coefficient 
maximum lateral concentration 
variation 

D 
D* 
c 

GL 

GR 

go 
H,L 
td 

V 
W 
X,Z 

actual diffusion coefficient AT, lateral temperature variation 
apparent diffusion coefficient s length scale of established vertical 
maximum vertical concentration concentration gradient 
gradient E aspect ratio of the cavity, H/L 
vertical concentration gradient in the rl dynamic viscosity of the fluid 
left part of the cavity V kinematic viscosity of the fluid 
vertical concentration gradient in the d electrical conductivity of the fluid 
right part of the cavity 7 non-dimensional experiment duration, 
intensity of gravity (Dtd)‘!2/L. 
width and length of the cavity 
duration of the simulated experiment 
velocity vector 
vertical velocity component 
horizontal and vertical coordinates. 

Non-dimensional numbers 
Gr Grashof number, = &g,AT,H3/v2 
Ha Hartmann number, = B H (cJ/~)‘/~ 
SC Schmidt number, = v/D. 

convection (by solute transport standards) should not 
affect the heat flow. A constant lateral temperature 
gradient is thus expected between the side walls, but 
this point will be checked numerically. 

In dilute alloys, the lateral concentration differences 
are generally very low, due to both the assumed weak- 
ness of the flow and the small absolute composition 
range of the diffusing couple. Thus, their effect on 
density variations can often be safely neglected, so 
that only the lateral temperature differences need be 
considered. However, this assumption can be checked 
a posteriori from a comparison of the thermal and 
solutal driving forces. 

Consistent with our low convective level hypothesis, 
the fluid velocity should then scale with the Grashof 
number [3], Gr = /&gOATHH3/v2. In the above 
expression, bT is the thermal expansion coefficient, g,, 

a 
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b 

IH.11 

T-To ??ATH 8 

2 
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- c co 
Fig. 1. Model cavity with coordinates axis (a) and typical 
axial composition profile (b). The composition gradient is 
established over a length scale 6 measured from the middle 

of the cavity (Z = L/2) 

the gravity level, v the kinematic viscosity, H the lat- 
eral dimension of the capillary and AT” a measure of 
the horizontal temperature difference. It should be 
kept in mind that the fluid velocity may scale with 
Gr”* at high convective levels [5], but this only occurs 
for values of the Grashof number far greater than 
those considered in the present work. 

From the proportionality relation between V and 
Gr, it can be easily shown [6] that convective mass 
transport scales with the product of the Grashof and 
Schmidt (SC = v/D) numbers. From dimensional 
analysis arguments, the problem is also seen to depend 
on two other groups, namely the aspect ratio of the 
cavity E = H/L and the scale of the experiment 
duration, 7 = (Dt,)“‘/L, t, being the dimensional 
diffusion time. 

The sensitivity of a given experiment to convection 
will certainly vary with the Gr x SC product, but an 
influence of E and 7 can be expected a priori, since 
both L and td affect the resulting composition profile. 
We shall now proceed to test these assumptions using 
a coupled scaling analysis-numerical simulations 
approach. 

III. SCALING ANALYSIS 

Our purpose in this section is to estimate the order 
of magnitude of the diffusion and convection terms 
appearing in equation (1). We shall only briefly recall 
the principles of the scaling procedure ; for more infor- 
mation on these matters, the interested reader is 
referred to Bejan [5]. The key idea is that the deriva- 
tives can be approximated from apriori defined ranges 
of variation. For instance, if the composition is 
assumed to increase smoothly from C, in Z, to CB 



in Z,, the concentration gradient over the interval 
[Z,, Z,] will bl: given as aC/aZ N (C,-- C,)/ D “avjaz2dx=$G/. (4) 

(2.4 - Z,) . 
s cl 

This may appear as a drastic simplification, but this Comparing equations (2) and (4), the ratio of the 
kind of approach was shown to be very fruitful in the convective and diffusive mass transfer contributions 
fields of heat and mass transfer (see for instance refs. is : 
[5-71). In the present problem, we shall proceed to 
estimate the diffusive and convective contributions in 
the laterally averaged equation (1) in order to identify 
the dominant transport mode. From the Birikh profile [8], we get IP = v/H Gr/192 

and equation (5) finally becomes 

Convective contrihtion R (%) = (GrS~)~/1500. (6) 
Since the fluid velocity is expected to be parallel to 

the Z-axis, except in the areas where the composition 
is uniform, the convective term in equation (1) can be IV. NUMERICAL SIMULATION 
approximated as : (V * V)C N W aC/aZ, where W is In parallel with the scaling analysis, we also per- 
the vertical velocity component. Now if the con- formed numerical simulations of the mass transfer 
centration gradient aC/aZ does not depend on lateral problem. Equation (1) was thus solved with the help 
position, the no net flow condition yields : of the FIDAP finite elements code, implemented on an 

s 

H H 

s 

HP 730 workstation. Typical mesh dimensions were 
wacjazdx = acjaz WdX = 0. 26 x 3 (nine-nodes quadrilateral elements). We made 

0 cl sure that the final results did not depend on both 

Thus, the convective effects could not be observed. 
space and time discretizations. We chose a successive 

Since an effect is present, the lateral variations of 
substitution method, with implicit time scheme, to 

the concentration gradient along the Z-axis must be 
obtain the solution. The classical Boussinesq approxi- 

accounted for. 
mation was used in the Navier-Stokes equation. 

On physical grounds, we rely on the fact that the 
Equation (1) being linear in concentration, all the 

lateral solute segregation can be related to the main 
computations were made with Co = 1 and C, = 0. A 

features of the velocity field [7]. After some simple 
typical output of the program is shown in Fig. 2. After 

but tedious algebra (see Appendix for details), the 
completion of the simulated run, we took the lateral 

absolute value of the integral of the convection term 
composition average at the nodes located in the Z- 

in equation (1) around the locations Z = L/2 + 8 can 
direction. The apparent diffusion coefficient D* was 
then estimated from an error function best fit of this 

be estimated as : composition average and compared to the exact value 

H s 1 H3m2 _ 
D used as an input in the transport equation. 

wacjazdx=,rIGl (2) We checked that convection did not modify the 
0 thermal field with respect to the reference, pure 

Wand 1 cl being, respectively, the average convection 
velocity across the cavity and the absolute value of 
the maximum composition gradient along the Z-axis, r-7 
i.e. at Z = L/2. 

To the first order, the average composition grad- 
ient along the Z-axis varies from e to 0 over a length 
scale d (see Fig. l), so that a2C/aZ2 = -e/is for 
ZE [L/2, L/2 + 81 and a2C/dZ2 = G/a for Z E [L/2 - 6, :i 

I I 

L/2]. The absolute value of the Laplacian term in 
equation (3) around the locations Z = L/2 f d is thus 

Fig. 2. Isoconcentration lines obtained from a FIDAP simu- 
lated run for the case Gr x SC = 360 (lateral magnification 

given as : x 10). 

Diffusive contribution 
The estimation I.S here much simpler ; indeed, from 

the no flux condition (K/&X = 0 for X = 0 and 
X = H), the integration of the Laplacian term in equa- 
tion (1) yields : 

H H 
D 

s 
V’CdX = D 

0 s 
a2 qaz2 dx. (3) 

cl 
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diffusion case (ATn = 0) and that the maximum vel- 
ocity in the fluid did indeed scale with the Grashof 
number. Moreover, the convective field was seen to 
remain directed along the Z-axis except in small recir- 
culating regions [9] and to compare well with Birikh’s 
one-dimensional solution [8]. 

Even under perturbed conditions, the concentration 
profile kept an error function appearance; however, 
when convection was too intense, the composition 
field became homogeneous, meaning that no fit was 
possible (‘infinite’ apparent diffusion coefficient). In 
some cases the lateral concentration variations were 
quite high (A&/C 2 15%), but still we obtained good 
estimates of D (relative error D*/D-1 2: 0.5%). 
Thus, it appears that lateral segregation is not a good 
indicator of the effect of convection in the present 
problem. 

We also observed the evolution of the length scale 
8 over which the concentration gradient along the Z- 
axis is established (see Fig. 1) : under purely diffusive 
conditions, 8 followed a (Df)“’ scaling law. With sig- 
nificant convection, the same scaling law was seen to 
hold, with D* replacing D. It thus seems that an a 
prioricorrect composition profile (i.e. without obvious 
perturbations) at the end of the experiment does not 
guarantee the validity of the measurement. 

A variety of runs were simulated in the course of this 
work. Experimental conditions and results in terms of 
induced error D */D - 1 (in percent) are summarized 
in Table 1. It is clear that both the aspect ratio of the 
cavity and the experiment duration have no influence 
on the accuracy of the measurement at a given value 
of Gr x SC, even though 8 does increase with time. The 
Gr x SC dependence is parabolic, as can be seen in Fig. 
3, and can be fitted as D*/D- l(%) = (Gr x SC)~/ 
4050. 

V. DISCUSSION 

As seen in equation (6), the relative convective 
transport contribution in the laterally averaged mass 
transport equation features the square of the Gr x SC 

Table I. Non-dimensional parameters used in the numerical 
simulations and resulting errors in terms of diffusion 

coefficient 

E z Gr Sc (0*-0)/D (%) 

7.5 x lo-’ 3.5 x lo-* 360 32 
8.5 x 10-Z 32.5 

3.75 x 1om3 3.5 x IO-2 360 31.5 
7.5 x 1o-3 32 
1.5 x 1om2 32 
7.5 x 1om3 3.5 x lo-* 9 0 

45 0.5 
90 2 

180 8 
270 18.5 
360 32 
450 50 

E 

I 
0 100 200 300 400 500 

Gr x SC 
Fig. 3. Variation of the error in diffusion coefficient (%) due 

to natural convection effects. 

product. On the other hand, lateral segregation is 
proportional to the fluid velocity. The two phenomena 
have different scaling laws and as a consequence radial 
segregation can not be taken as a relevant measure of 
the effect of convection. 

Another result of the scaling analysis is that 8 does 
not appear in equation (5). This means that, even 
though the composition profile changes with time, its 
sensitivity to convection is not affected by the duration 
of the experiment, at least when the end con- 
centrations remain close to their initial values. Finally, 
it is also clear that equation (5) predicts no effect of 
the aspect ratio of the cavity. 

Scaling analysis and numerical results thus lead to 
similar conclusions, and we have to admit that the 
sensitivity of a given measurement to convection only 
depends on the value of the Gr x SC product. More- 
over, let us suppose that the additional convective 
contribution can be simply added to the diffusive term, 

D*=D(l+R) (7) 

the ratio R being defined in equation (5). The error in 
terms of D*/D- 1 is then equal to R and the values 
coming from the numerical fit (4050) and the scaling 
analysis (1500) are thus in good order of magnitude 
agreement. 

Apparently, since Gr varies with the third power of 
H, reducing the capillary dimensions will guarantee 
nearly purely diffusive transport, in particular because 
in real experimental set-ups the lateral temperature 
difference will also decrease. However, this is not 
always possible in practice, the wall effect [2] becom- 
ing very important for H smaller than 0.5 mm. 

For typical experimental conditions (H = 10e3 m, 
AT, = 0.2 K) and physicochemical parameters 
characteristic of semiconductors & = 1O-4 K-‘, 
v = 3 x 10e7 m2 s-‘, D = lo-* m2 s-i), we find 
Gr x SC = 66. According to our numerical results, this 
would induce a mere 1% error, acceptable in most 
cases. For liquid metals, however, the diffusion 
coefficients are much smaller, of the order of 
D = 2 x 1O-9 m2 s-’ ; the other parameters being held 
constant, we now have Gr x SC = 333 and the dis- 
crepancy would exceed 25%. 
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Larger capillaries or higher lateral temperature 
differences could thus lead to a catastrophic spread of 
the results and a careful design of the experimental set- 
up appears necess#ary. Even then, there is no guarantee 
that convective mass transport will not be significant, 
and obtaining a data bank with clean, reference 
diffusive measurements remains a challenge to the 
scientific community. 

Such data could be obtained from microgravity 
experiments or, in the case of electrically conducting 
fluids, using a magnetic field in connection with a 
ground-based set-up. The Lorentz force is indeed 
known to significantly damp convective motion ; the 
Hartmann number, Ha = BH (a/q)“’ is the non- 
dimensional parameter scaling the intensity of the field 
[IO], o and Y) being, respectively, the electrical con- 
ductivity and the dynamic viscosity of the fluid. 

At high Hartmann numbers, the velocity reduction 
is proportional to either Ha or Hd, depending on the 
geometry of the (cavity [I I, 121. For values typical of 
metallic melts (a = IO6 R-‘m-l, 9 = 2 x lO-3 Pa s), a 
B = 1 T field in a cavity with H = 10m3 m, would yield 
Ha = 22. Some damping may then be expected, but 
the asymptotic regime would not be reached [l I] ; 
this means that higher field intensities could prove 
necessary in order to get rid of convective effects. 

VI. CONCLUDING REMARKS 

We used a Icoupled numerical/scaling analysis 
approach to gain some understanding of the effect of 
natural convection in diffusion coefficient measure- 
ment experiments. Both techniques lead to similar 
results and thus support each other. We observed that 
‘correct looking’ profiles at the end of a simulated 
experiment and lateral segregation are not good indi- 
cators of convective interference ; instead, the relevant 
criterion featured the square of the fluid velocity. 

Of course, it should be kept in mind that our two- 
dimensional planar configuration may not be 
sufficient to adequately describe all the transport 
phenomena in an actual, cylindrical cell. However, we 
strongly believe that the main conclusions of this 
paper would stand, regardless of the degree of sophis- 
tication of the numerical simulations (see ref. [ 131 for 
a related question). 

It can thus be stated that the design of an exper- 
imental set-up should be optimized, specially for species 
with low diffusion coefficients, such as liquid metals. 
In any case, carefully designed reference microgravity 
measurements would certainly be useful, as well as 
ground based experiments performed under intense 
magnetic fields. 

Further work on this topic will feature the study of 
concentrated alloys, in order to clarify the interactic- 
of the solutal and hydrodynamic fields. It would also 
be interesting to check the effect of a misalignment of 
the capillary with gravity and to perform a few three- 
dimensional simulations in more realistic con- 

figurations to assess the limitations of our simple 
model. 
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APPENDIX 

Our purpose here is to estimate the integral of the con- 
vective term in equation (1). Since we do have to take into 
account the lateral variations of the axial concentration 
gradient, let us write : 
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GR =; acjazdx G, = ; acjazdx 

(Al) 
GR and GL stand for the average composition gradient along 
the Z-axis, respectively in the right and left parts of the 
cavity. We now define : 

&Z H s WdXz -2 s HI2 

H H, 
WdX (A21 

H,2 

as the average fluid velocity, positive with our choice of 
coordinate axes and temperature boundary condition. The 
integral of the convective contribution can then be, for order 
of magnitude purposes, written as : 

s H 

WaCjaZdX = ci’(G, -CL) f. L43) 
,I 

Let us suppose for instance that C, > C, ; all the vertical 
concentration gradients are then negative with our choice of 
coordinate axes, but conversely-from the direction of fluid 
motion (see Fig. l)-lateral segregation is always positive. 
In order to make an estimate of equation (A3), we now 
need a relation between (G, - Cc) and the maximum lateral 
concentration variation AC,. expected at the mid-height of 
the cavity (Z = L/2). 

To start with, let us remark that at the location L/2-8, 
the lateral segregation can be written as : 

AC(Z N L/2-8) = ACn-(GR-G& (A4) 

Now, since 8 was defined as the length scale of established 
Z-axis concentration gradient, we can safely assume that 
around Z v L/2-6. lateral segregation is very small with 
respect to its value at Z = L/2 (AC(Z 2: L/2-8) << AC,). 
Equation (A4) thus becomes : 

GR -G, = AC,/& (A9 

Had we considered the location Z z L/2+8 or the case 
Co < C,, the sign may have been opposite, but the same 

arguments would have led to a relation similar to equation 
(A5). 

The last step of the analysis consists in building a link 
between AC, and the average convective velocity IV, To 
this end, let us first remark that at the cavity mid-height 
(Z = L/2), the time variations of the concentration field are 
very slow, since C always remains close to C,+C,/2. An 
additional idea is that at Z = L/2, the Z-concentration pro- 
files are almost linear. We can thus write dC/irt, 
?‘C/dZ’ << ?‘C/dX* ; moreover, in that region, we also have 
aC/aZ = G, and so equation (1) becomes : 

D a? cpxz = w(x)6 646) 
The order of magnitude of dC/aX is A&/H, since the X- 
variations take place over a length scale H. If we now use 
the no-flux condition aC/aX = 0 in X = 0 and X = H, the 
second order derivative is expected to scale as : 

O<X<H/2 

H/2 < X < H. 
From the definition of IV as the average velocity in the 

cavity, equation (A6) then reduces to 2DACn/H’ = - II%?, 
keeping in mind that both a’C/aXz and W change sign 
around X = H/2. and we finally get : 

AC, = - f%H’/2D. (A71 
ACn thus scales linearly with the fluid velocity. In a related 

problem, i.e. the modeling of lateral segregation in crystal 
growth [7], a similar conclusion could be drawn. Please note 
that with our choice C, z C,, ACn is indeed positive since G 
is negative. 

Finally, combining the results of equations (A3), (AS) and 
(A7), we get for the absolute value of the integral of the 
convection term in equation (1) around the locations 
z = L/2+6: 

I 
H 

wacjazdx = i Ds 1 =h 
Cl 


